Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation.

نویسندگان

  • Lingjie Li
  • Lei Sun
  • Furong Gao
  • Jing Jiang
  • Ying Yang
  • Chunliang Li
  • Junjie Gu
  • Zhe Wei
  • Acong Yang
  • Rui Lu
  • Yu Ma
  • Fan Tang
  • Sung Won Kwon
  • Yingming Zhao
  • Jinsong Li
  • Ying Jin
چکیده

Self-renewal and differentiation of embryonic stem cells (ESCs) are controlled by intracellular transcriptional factors and extracellular factor-activated signaling pathways. Transcription factor Oct4 is a key player maintaining ESCs in an undifferentiated state, whereas the Erk/MAPK pathway is known to be important for ESC differentiation. However, the manner in which intracellular pluripotency factors modulate extracellular factor-activated signaling pathways in ESCs is not well understood. Here, we report identification of a target gene of Oct4, serine/threonine kinase 40 (Stk40), which is able to activate the Erk/MAPK pathway and induce extraembryonic-endoderm (ExEn) differentiation in mouse ESCs. Interestingly, cells overexpressing Stk40 exclusively contribute to the ExEn layer of chimeric embryos when injected into host blastocysts. In contrast, deletion of Stk40 in ESCs markedly reduces ExEn differentiation in vitro. Mechanistically, Stk40 interacts with Rcn2, which also activates Erk1/2 to induce ExEn specification in mouse ESCs. Moreover, Rcn2 proteins are specifically located in the cytoplasm of the ExEn layer of early mouse embryos. Importantly, knockdown of Rcn2 blocks Stk40-activated Erk1/2 and ESC differentiation. Therefore, our study establishes a link between the pluripotency factor Oct4 and the Erk/MAPK signaling pathway, and it uncovers cooperating signals in the Erk/MAPK activation that control ExEn differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst.

In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is re...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst

Pluripotent epiblast (EPI) cells, present in the inner cell mass (ICM) of the mouse blastocyst, are progenitors of both embryonic stem (ES) cells and the fetus. Discovering how pluripotency genes regulate cell fate decisions in the blastocyst provides a valuable way to understand how pluripotency is normally established. EPI cells are specified by two consecutive cell fate decisions. The first ...

متن کامل

OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool ...

متن کامل

Zic3 is required for maintenance of pluripotency in embryonic stem cells.

Embryonic stem (ES) cell pluripotency is dependent upon sustained expression of the key transcriptional regulators Oct4, Nanog, and Sox2. Dissection of the regulatory networks downstream of these transcription factors has provided critical insight into the molecular mechanisms that regulate ES cell pluripotency and early differentiation. Here we describe a role for Zic3, a member of the Gli fam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 4  شماره 

صفحات  -

تاریخ انتشار 2010